DIGITAL NOTES ON SOFTWARE ENGINEERING

B.TECH II YEAR - II SEM

(2019-2020)

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC - 'A' Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, INDIA.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY L T/P/D C

II Year B.Tech IT -II Sem

3 -/-/- 3

(R18A0511) SOFTWARE ENGINEERING

Objectives:

The students will be able:

- 1. To comprehend the various software process models.
- 2. To understand the types of software requirements and SRS document.
- 3. To know the different software design and architectural styles.
- 4. To learn the software testing approaches and metrics used in software development.
- 5. To know about quality control and risk management.

UNIT - I:

Introduction to Software Engineering: The evolving role of software, Changing Nature of Software, Software myths.

A Generic view of process: Software engineering- A layered technology, a process framework, Process patterns, process assessment.

Process models: The waterfall model, Incremental process models, Evolutionary process models, The Unified process, Agility and Agile Process model, Extreme Programming, Other process models of Agile Development and Tools

UNIT - II:

Software Requirements: Functional and non-functional requirements, User requirements, System requirements, Interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, Requirements elicitation and analysis, Requirements validation, Requirements management.

System models: Context Models, Behavioral models, Data models, Object models, structured methods. UML Diagrams.

UNIT - III:

Design Engineering: Design process and Design quality, Design concepts, the design model. **Creating an architectural design:** Software architecture, Data design, Architectural styles and patterns, Architectural Design.

Object-Oriented Design: Objects and object classes, An Object-Oriented design process, evolution.

Performing User interface design: Golden rules, User interface analysis and design, interface analysis, interface design steps, Design evaluation.

UNIT - IV:

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, Black-Box and White-Box testing, Validation testing, System testing, the art of Debugging.

Product metrics: Software Quality, Metrics for Analysis Model, Metrics for Design Model, Metrics for source code, Metrics for testing, Metrics for maintenance.

Metrics for Process and Products: Software Measurement, Metrics for software quality.

UNIT - V:

Risk management: Reactive vs. Proactive Risk strategies, software risks, Risk identification, Risk projection, Risk refinement, RMMM, RMMM Plan.

Quality Management: Quality concepts, Software quality assurance, Software Reviews, Formal technical reviews, Statistical Software quality Assurance, The Capability Maturity Model Integration (CMMI), Software reliability, The ISO 9000 quality standards.

TEXT BOOKS:

- 1. Software Engineering A practitioner's Approach, Roger S Pressman, 6th edition. McGraw Hill International Edition.
- 2. Software Engineering, Ian Sommerville, 7th edition, Pearson education.

REFERENCE BOOKS:

- 1. Software Engineering, A Precise Approach, Pankaj Jalote, Wiley India, 2010.
- 2. Software Engineering: A Primer, Waman S Jawadekar, Tata McGraw-Hill, 2008
- 3. Software Engineering, Principles and Practices, Deepak Jain, Oxford University Press.
- 4. Software Engineering1: Abstraction and modelling, Diner Bjorner, Springer International edition, 2006.
- 5. Software Engineering2: Specification of systems and languages, Diner Bjorner, Springer International edition 2006.
- 6. Software Engineering Principles and Practice, Hans Van Vliet, 3rd edition, John Wiley & Sons Ltd
- 7. Software Engineering3: Domains, Requirements, and Software Design, D. Bjorner, Springer International Edition.
- 8. Introduction to Software Engineering, R. J. Leach, CRC Press.

Course Outcomes:

Students will have the ability:

- 1. To compare and select a process model for a business system.
- 2. To identify and specify the requirements for the development of an application.
- 3. To develop and maintain efficient, reliable and cost effective software solutions.
- 4. To critically think and evaluate assumptions and arguments

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY

INDEX

S. No	Unit	Торіс	Page no
1	I	Introduction to Software Engineering	5
2	I	Evolving Role of Software	5
3	I	A Generic view of process	7
4	I	Process models	11
5	II	Software Requirements	18
6	II	Requirements engineering process	21
7	II	System models	26
8	III	Design Engineering	30
9	III	Creating an architectural design	33
10	III	Object-Oriented Design	37
11	III	Performing User interface design	39
12	IV	Testing Strategies	42
13	IV	Product metrics	49
14	IV	Metrics for Process and Products	52
15	V	Risk management	53
16	V	Quality Management	56

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY

<u>UNIT - I</u>

INTRODUCTION:

Software Engineering is a framework for building software and is an engineering approach to software development. Software programs can be developed without S/E principles and methodologies but they are indispensable if we want to achieve good quality software in a cost effective manner.

Software is defined as:

Instructions + Data Structures + Documents

Engineering is the branch of science and technology concerned with the design, building, and use of engines, machines, and structures. It is the application of science, tools and methods to find cost effective solution to simple and complex problems.

SOFTWARE ENGINEERING is defined as a systematic, disciplined and quantifiable approach for the development, operation and maintenance of software.

The Evolving role of software

The dual role of Software is as follows:

- 1. A Product- Information transformer producing, managing and displaying information.
- 2. A Vehicle for delivering a product- Control of computer(operating system), the communication of information(networks) and the creation of other programs.

Characteristics of software

- Software is developed or engineered, but it is not manufactured in the classical sense.
- Software does not wear out, but it deteriorates due to change.
- **Software is custom built** rather than assembling existing components.

THE CHANGING NATURE OFSOFTWARE

The various categories of software are

- 1. System software
- 2. Application software
- 3. Engineering and scientific software
- 4. Embedded software
- 5. Product-line software
- 6. Web-applications
- 7. Artificial intelligence software
- **System software.** System software is a collection of programs written to service other programs
- **Embedded software--** resides in read-only memory and is used to control products and systems for the consumer and industrial markets.
- Artificial intelligence software. Artificial intelligence (AI) software makes use of nonnumeric algorithms to solve complex problems that are not amenable to computation or straightforward analysis

• **Engineering and scientific software.** Engineering and scientific software have been characterized by "number crunching" algorithms.

LEGACY SOFTWARE

Legacy software are older programs that are developed decades ago.

The quality of legacy software is poor because it has inextensible design, convoluted code, poor and nonexistent documentation, test cases and results that are not achieved.

As time passes legacy systems evolve due to following reasons:

- The software must be adapted to meet the needs of new computing environment or technology.
- The software must be enhanced to implement new business requirements.
- The software must be extended to make it interoperable with more modern systems or database
- The software must be rearchitected to make it viable within a network environment.

SOFTWARE MYTHS

Myths are widely held but false beliefs and views which propagate misinformation and confusion.

Three types of myth are associated with software:

- Management myth
- Customer myth
- Practitioner's myth

MANAGEMENT MYTHS

- Myth(1)-The available standards and procedures for software are enough.
- Myth(2)-Each organization feel that they have state-of-art software development tools since they have latest computer.
- Myth(3)-Adding more programmers when the work is behind schedule can catch up.
- Myth(4)-Outsourcing the software project to third party, we can relax and let that party build it.

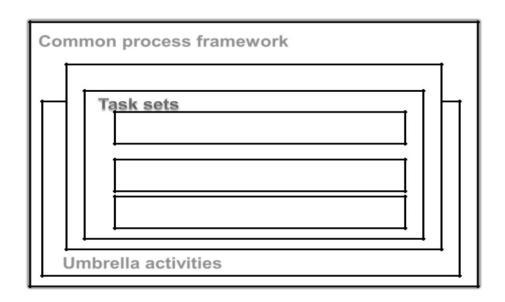
CUSTOMER MYTHS

- Myth(1)- General statement of objective is enough to begin writing programs, the details can be filled in later.
- Myth(2)-Software is easy to change because software is flexible

PRACTITIONER'S MYTH

- Myth(1)-Once the program is written, the job has been done.
- Myth(2)-Until the program is running, there is no way of assessing the quality.
- Myth(3)-The only deliverable work product is the working program
- Myth(4)-Software Engineering creates voluminous and unnecessary documentation and invariably slows down software development.

SOFTWARE ENGINEERING-A LAYERED TECHNOLOGY


Fig: Software Engineering-A layered technology

SOFTWARE ENGINEERING - A LAYERED TECHNOLOGY

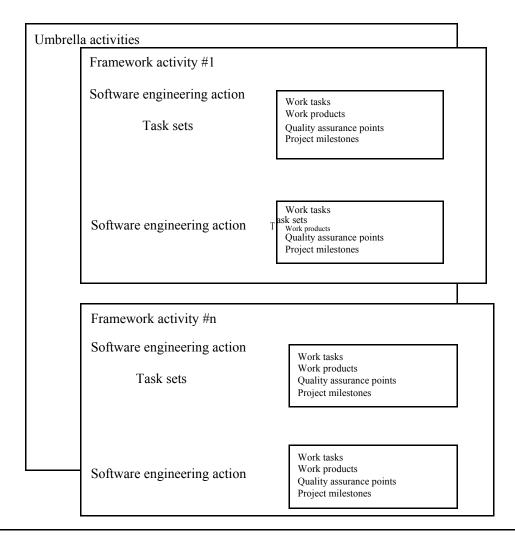
- Quality focus Bedrock that supports Software Engineering.
- Process Foundation for software Engineering
- Methods Provide technical How-to's for building software
- Tools Provide semi-automatic and automatic support to methods

A PROCESS FRAMEWORK

- Establishes the foundation for a complete software process
- Identifies a number of framework activities applicable to all software projects
- Also include a set of umbrella activities that are applicable across the entire software process.

A PROCESS FRAMEWORK comprises of:

Common process framework


Umbrella activities

Framework activities

Tasks

Milestones, deliverables

SQA points

A PROCESS FRAMEWORK

Used as a basis for the description of process models Generic process activities

- Communication
- Planning
- Modeling
- Construction
- Deployment

A PROCESS FRAMEWORK

Generic view of engineering complimented by a number of umbrella activities

- Software project tracking and control
- Formal technical reviews
- Software quality assurance
- Software configuration management
- Document preparation and production
- Reusability management

- Measurement
- Risk management

CAPABILITY MATURITY MODEL INTEGRATION(CMMI)

- Developed by SEI(Software Engineering institute)
- Assess the process model followed by an organization and rate the organization with different levels
- A set of software engineering capabilities should be present as organizations reach different levels of process capability and maturity.

CMMI process meta model can be represented in different ways

- 1.A continuous model
- 2.A staged model

Continuous model:

- -Lets organization select specific improvement that best meet its business objectives and minimize risk-Levels are called capability levels.
- -Describes a process in 2 dimensions
- -Each process area is assessed against specific goals and practices and is rated according to the following capability levels.

CMMI

- Six levels of CMMI
- Level 0:Incomplete
- Level 1:Performed
- Level 2: Managed
- Level 3:Defined
- Level 4: Quantitatively managed
- Level 5:Optimized

CMMI

- Incomplete -Process is adhoc . Objective and goal of process areas are not known
- Performed -Goal,o bjective, work tasks, work products and other activities of software process are carried out
- Managed -Activities are monitored, reviewed, evaluated and controlled
- Defined -Activities are standardized, integrated and documented
- Quantitatively Managed -Metrics and indicators are available to measure the process and quality
- Optimized Continuous process improvement based on quantitative feed back from the user
- -Use of innovative ideas and techniques, statistical quality control and other methods for process improvement.

CMMI - Staged model

- This model is used if you have no clue of how to improve the process for quality software.
- It gives a suggestion of what things other organizations have found helpful to work first
- Levels are called maturity levels

PROCESS PATTERNS

Software Process is defined as collection of Patterns. Process pattern provides a template. It comprises of

- Process Template
- -Pattern Name
- -Intent
- -Types
 - -Task pattern
 - Stage pattern
 - -Phase Pattern
- Initial Context
- Problem
- Solution
- Resulting Context
- Related Patterns

PROCESS ASSESSMENT

Does not specify the quality of the software or whether the software will be delivered on time or will it stand up to the user requirements. It attempts to keep a check on the current state of the software process with the intention of improving it.

PROCESS ASSESSMENT

Software Process Software Process Assessment Software Process improvement Motivates Capability determination

APPROACHES TO SOFTWARE ASSESSMENT

- Standard CMMI assessment (SCAMPI)
- CMM based appraisal for internal process improvement
- SPICE(ISO/IEC 15504)
- ISO 9001:2000 for software

Personal and Team Software Process

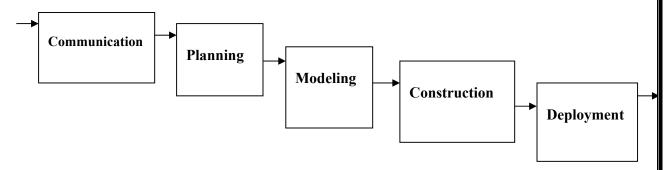
Personal software process

- > PLANNING
- > HIGH LEVEL DESIGN
- ➤ HIGH LEVEL DESIGN REVIEW
- > DEVELOPMENT
- **▶** POSTMORTEM

Personal and Team Software Process

Team software process

Goal of TSP


- Build self-directed teams
- Motivate the teams
- Acceptance of CMM level 5 behavior as normal to accelerate software process improvement
- Provide improvement guidance to high maturity organization

PROCESS MODELS

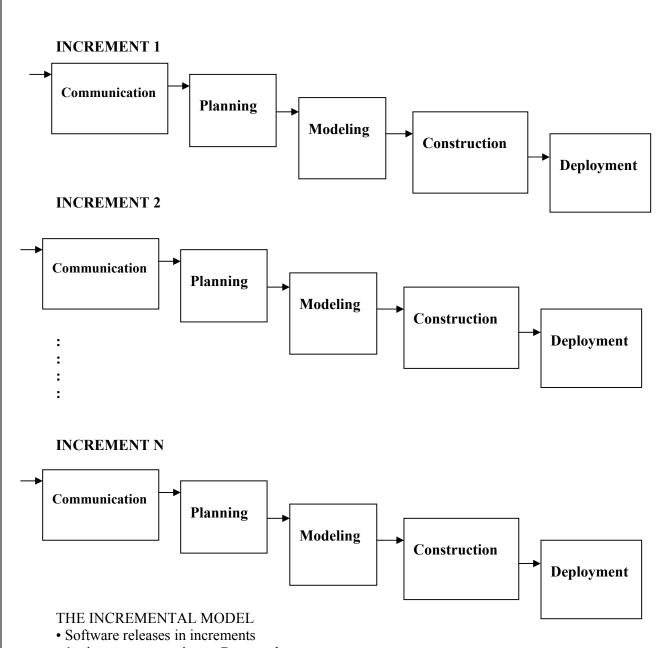
- Help in the software development
- Guide the software team through a set of framework activities
- Process Models may be linear, incremental or evolutionary

THE WATERFALL MODEL

- Used when requirements are well understood in the beginning
- Also called classic life cycle
- A systematic, sequential approach to Software development
- Begins with customer specification of Requirements and progresses through planning, modeling, construction and deployment.

This Model suggests a systematic, sequential approach to SW development that begins at the system level and progresses through analysis, design, code and testing

PROBLEMS IN WATERFALLMODEL


- Real projects rarely follow the sequential flow since they are always iterative
- The model requires requirements to be explicitly spelled out in the beginning, which is often difficult
- A working model is not available until late in the project time plan

THE INCREMENTAL PROCESS MODEL

- Linear sequential model is not suited for projects which are iterative in nature
- Incremental model suits such projects
- Used when initial requirements are reasonably well-defined and compelling need to provide limited functionality quickly
- Functionality expanded further in later releases
- Software is developed in increments

The Incremental Model

- > Communication
- Planning
- Modeling
- Construction
- Deployment

- 1st increment constitutes Core product
- Basic requirements are addressed
- Core product undergoes detailed evaluation by the customer
- As a result, plan is developed for the next increment. Plan addresses the modification of core product to better meet the needs of customer
- Process is repeated until the complete product is produced

THE RAD (Rapid Application Development) MODEL

- An incremental software process model
- Having a short development cycle
- High-speed adoption of the waterfall model using a component based construction approach
- Creates a fully functional system within avery short span time of 60 to 90 days

The RAD Model consists of the following phases:

Communication

Planning

Construction

Component reuse automatic code generation testing

Modeling

Business modeling Data modeling Process modeling

Deployment

integration delivery feedback

THE RAD MODEL

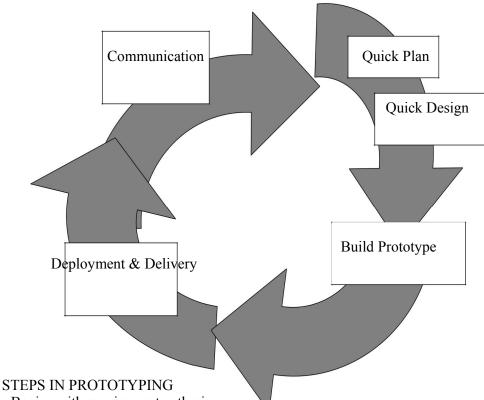
- Multiple software teams work in parallel on different functions
- Modeling encompasses three major phases: Business modeling, Data modeling and process modeling
- Construction uses reusable components, automatic code generation and testing

Problems in RAD

- Requires a number of RAD teams
- Requires commitment from both developer and customer for rapid-fire completion of activities
- Requires modularity
- Not suited when technical risks are high

EVOLUTIONARY PROCESSMODEL

- Software evolves over a period of time
- Business and product requirements often change as development proceeds making a straight-line path to an end product unrealistic
- Evolutionary models are iterative and as such are applicable to modern day applications

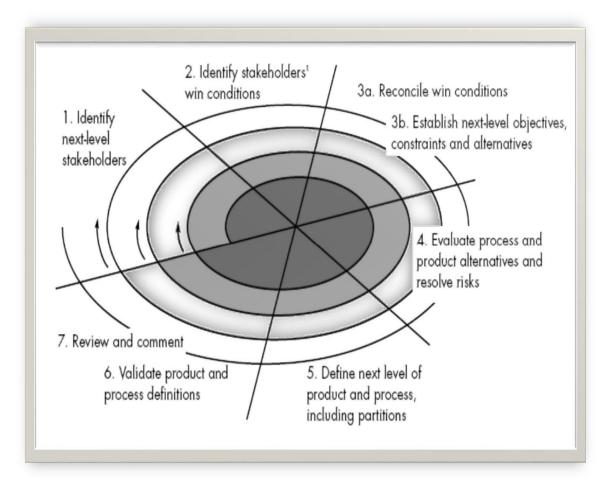

Types of evolutionary models

- Prototyping
- Spiral model
- Concurrent development model

PROTOTYPING

- Mock up or model(throw away version) of a software product
- Used when customer defines a set of objective but does not identify input,output,or processing requirements
- Developer is not sure of:
- efficiency of an algorithm

- adaptability of an operating system
- human/machine interaction


- Begins with requirement gathering
- Identify whatever requirements are known
- Outline areas where further definition is mandatory
- A quick design occur
- Quick design leads to the construction of prototype
- Prototype is evaluated by the customer
- Requirements are refined
- Prototype is turned to satisfy the needs of customer

LIMITATIONS OF PROTOTYPING

- In a rush to get it working, overall software quality or long term maintainability are generally overlooked
- Use of inappropriate OS or PL
- Use of inefficient algorithm

THE SPIRAL MODEL

An evolutionary model which combines the best feature of the classical life cycle and the iterative nature of prototype model. Include new element: Risk element. Starts in middle and continually visits the basic tasks of communication, planning, modeling, construction and deployment

THE SPIRAL MODEL

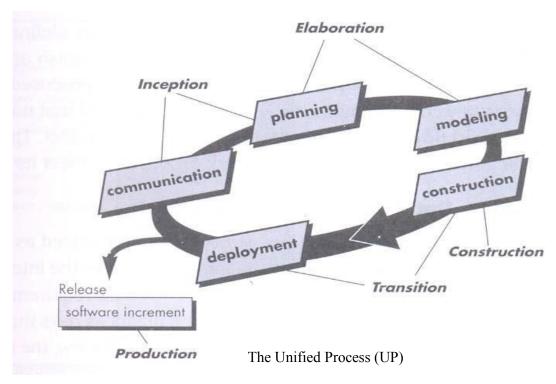
- Realistic approach to the development of large scale system and software
- Software evolves as process progresses
- Better understanding between developer and customer
- The first circuit might result in the development of a product specification
- Subsequent circuits develop a prototype
- And sophisticated version of software

THE CONCURRENT DEVELOPMENT MODEL

- •Also called concurrent engineering
- •Constitutes a series of framework activities, software engineering action, tasks and their associated states
- •All activities exist concurrently but reside in different states
- •Applicable to all types of software development
- •Event generated at one point in the process trigger transitions among the states

A FINAL COMMENT ON EVOLUTIONARY PROCESS

- Difficult in project planning
- Speed of evolution is not known


- Does not focus on flexibility and extensibility (more emphasis on high quality)
- Requirement is balance between high quality and flexibility and extensibility

THE UNIFIED PROCESS

Evolved by Rumbaugh, Booch, Jacobson. Combines the best features their OO models. Adopts additional features proposed by otherexperts. Resulted in Unified Modeling Language(UML). Unified process developed Rumbaugh and Booch. A framework for Object-Oriented Software Engineering using UML

PHASES OF UNIFIED PROCESS

- INCEPTION PHASE
- ELABORATION PHASE
- CONSTRUCTION PHASE
- TRANSITION PHASE

UNIFIED PROCESS WORK PRODUCTS

Tasks which are required to be completed during different phases

- 1. Inception Phase
- *Vision document
- *Initial Use-Case model
- *Initial Risk assessment
- *Project Plan

- 2. Elaboration Phase
- *Use-Case model
- *Analysis model
- *Software Architecture description *Preliminary design model *Preliminary model

- 3. Construction Phase
- *Design model
- *System components
- *Test plan and procedure
- *Test cases
- *Manual
- 4. Transition Phase
- *Delivered software increment
- *Beta test results
- *General user feedback

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY

UNIT II

SOFTWARE REQUIREMENTS

IEEE defines Requirement as:

- 1. A condition or capability needed by a user to solve a problem or achieve an objective
- 2. A condition or capability that must be met or possessed by a system or a system component to satisfy constract, standard, specification or formally imposed document
- 3. A documented representation of a condition nor capability as in 1 or 2

SOFTWARE REQUIREMENTS

• Encompasses both the User's view of the requirements(the external view) and the Developer's view(inside characteristics)

User's Requirements

- --Statements in a natural language plus diagram, describing the services the system is expected to provide and the constraints
- System Requirements -- Describe the system's function, services and operational condition

SOFTWARE REQUIREMENTS

- System Functional Requirements
- --Statement of services the system should provide
- -- Describe the behavior in particular situations
- -- Defines the system reaction to particular inputs
- Nonfunctional Requirements
- Constraints on the services or functions offered by the system
- --Include timing constraints, constraints on the development process and standards
- -- Apply to system as a whole
- Domain Requirements
- --Requirements relate to specific application of the system
- --Reflect characteristics and constraints of that system

FUNCTIONAL REQUIREMENTS

- Should be both complete and consistent
- Completeness
- -- All services required by the user should be defined
- Consistent
- -- Requirements should not have contradictory definition
- Difficult to achieve completeness and consistency for large system

NON-FUNCTIONAL REQUIREMENTS

Types of Non-functional Requirements

- 1.Product Requirements
- -Specify product behavior
- -Include the following
- Usability
- Efficiency
- Reliability

- Portability
- 2. Organisational Requirements
- -- Derived from policies and procedures
- --Include the following:
- Delivery
- Implementation
- Standard
- 3.External Requirements
- -- Derived from factors external to the system and its development process
- --Includes the following
- Interoperability
- Ethical
- Legislative

PROBLEMS FACED USING THE NATURAL LANGUAGE

- 1. Lack of clarity-- Leads to misunderstanding because of ambiguity of natural language
- 2. Confusion-- Due to over flexibility, sometime difficult to find whether requirements are same or distinct.
- 3. Amalgamation problem-- Difficult to modularize natural language requirements

STRUCTURED LANGUAGESPECIFICATION

- Requirements are written in a standard way
- Ensures degree of uniformity
- Provide templates to specify system requirements
- Include control constructs and graphical highlighting to partition the specification

SYSTEM REQUIREMENTS STANDARD FORM

- Function
- Description
- Inputs
- Source
- Outputs
- Destination
- Action
- Precondition
- Post condition
- Side effects

Interface Specification

- Working of new system must match with the existing system
- Interface provides this capability and precisely specified

Three types of interfaces

- 1.Procedural interface-- Used for calling the existing programs by the new programs
- 2.Data structures--Provide data passing from one sub-system to another
- 3. Representations of Data
- -- Ordering of bits to match with the existing system
- --Most common in real-time and embedded system

The Software Requirements document

The requirements document is the official statement of what is required of the system developers. Should include both a definition of user requirements and a specification of the system requirements. It is NOT a design document. As far as possible, it should set of WHAT the system should do rather than HOW it should do it

The Software Requirements document

Heninger suggests that there are 6 requirements that requirement document should satisfy. It should

- specify only external system behavior
- specify constraints on the implementation.
- Be easy to change
- Serve as reference tool for system maintainers
- Record forethought about the life cycle of the system.
- Characterize acceptable responses to undesired events

Purpose of SRS

- communication between the Customer, Analyst, system developers, maintainers, ...
- firm foundation for the design phase
- support system testing activities
- Support project management and control
- controlling the evolution of the system

IEEE requirements standard

Defines a generic structure for a requirements document that must be instantiated for each specific system.

- Introduction.
- General description.
- Specific requirements.
- Appendices.
- Index.

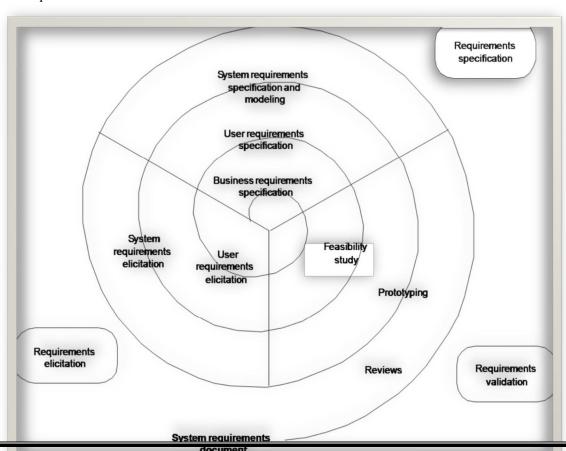
IEEE requirements standard

- 1.Introduction
- 1.1 Purpose
- 1.2 Scope
- 1.3 Definitions, Acronyms and Abbreviations
- 1.4 References
- 1.5 Overview
- 2. General description
- 2.1 Product perspective
- 2.2 Product function summary
- 2.3 User characteristics
- 2.4 General constraints
- 2.5 Assumptions and dependencies
- 3. Specific Requirements
- Functional requirements

- -External interface requirements
- Performance requirements
- Design constraints
- Attributes eg. security, availability, maintainability, transferability/conversion
- Other requirements
- Appendices
- Index

REQUIREMENTS ENGINEERING PROCESS

To create and maintain a system requirement document . The overall process includes four high level requirements engineering sub-processes:


- 1.Feasibility study
- --Concerned with assessing whether the system is useful to the business
- 2. Elicitation and analysis
- -- Discovering requirements
- 3. Specifications
- --Converting the requirements into a standard form
- 4. Validation
- -- Checking that the requirements actually define the system that the customer wants

SPIRAL REPRESENTATION OF REQUIREMENTSENGINEERING PROCESS

Process represented as three stage activity. Activities are organized as an iterative process around a spiral. Early in the process, most effort will be spent on understanding high-level business and the use requirement. Later in the outer rings, more effort will be devoted to system requirements engineering and system modeling

Three level process consists of:

- 1. Requirements elicitation
- 2. Requirements specification
- 3. Requirements validation

FEASIBILITY STUDIES

Starting point of the requirements engineering process

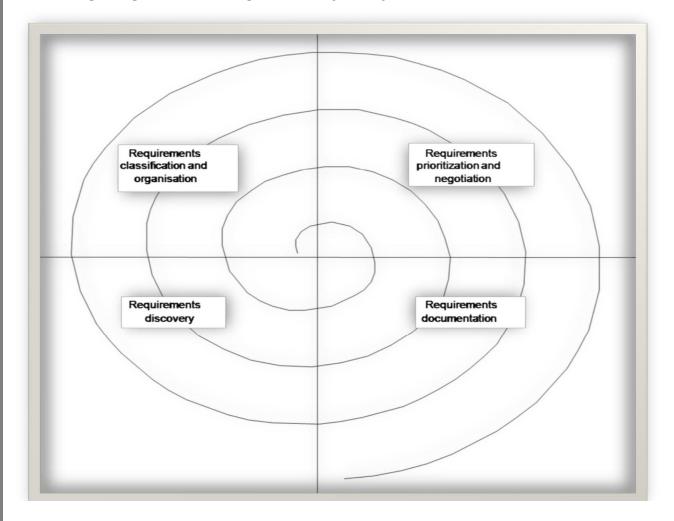
- Input: Set of preliminary business requirements, an outline description of the system and how the system is intended to support business processes
- Output: Feasibility report that recommends whether or not it is worth carrying out further Feasibility report answers a number of questions:
- 1.Does the system contribute to the overall objective
- 2.Can the system be implemented using the current technology and within given cost and schedule
- 3.Can the system be integrated with other system which are already in place.

REQUIREMENTS ELICITATION ANALYSIS

Involves a number of people in an organization.

Stakeholder definition-- Refers to any person or group who will be affected by the system directly or indirectly i.e. Endusers, Engineers, business managers, domain experts.

Reasons why eliciting is difficult


- 1. Stakeholder often don't know what they want from the computer system.
- 2.Stakeholder expression of requirements in natural language is sometimes difficult to understand.
- 3.Different stakeholders express requirements differently
- 4.Influences of political factors Change in requirements due to dynamic environments.

REQUIREMENTS ELICITATION PROCESS

Process activities

- 1.Requirement Discovery -- Interaction with stakeholder to collect their requirements including domain and documentation
- 2.Requirements classification and organization -- Coherent clustering of requirements from unstructured collection of requirements
- 3. Requirements prioritization and negotiation -- Assigning priority to requirements
- --Resolves conflicting requirements through negotiation
- 4. Requirements documentation -- Requirements be documented and placed in the next round of spiral

The spiral representation of Requirements Engineering

REQUIEMENTS DICOVERY TECHNIQUES

- 1. View points -- Based on the viewpoints expressed by the stake holder
- --Recognizes multiple perspectives and provides a framework for discovering conflicts in the requirements proposed by different stakeholders

Three Generic types of viewpoints

- 1.Interactor viewpoint--Represents people or other system that interact directly with the system
- 2.Indirect viewpoint--Stakeholders who influence the requirements, but don't use the system
- 3.Domain viewpoint--Requirements domain characteristics and constraints that influence the requirements.
- 2. <u>Interviewing</u>--Puts questions to stakeholders about the system that they use and the system to be developed. Requirements are derived from the answers.

Two types of interview

- Closed interviews where the stakeholders answer a pre-defined set of questions.
- Open interviews discuss a range of issues with the stakeholders for better understanding their needs.

Effective interviewers

- a) Open-minded: no pre-conceived ideas
- b) Prompter: prompt the interviewee to start discussion with a question or a proposal
- 3. <u>Scenarios</u> -- Easier to relate to real life examples than to abstract description. Starts with an outline of the interaction and during elicitation, details are added to create a complete description of that interaction

Scenario includes:

- 1. Description at the start of the scenario
- 2. Description of normal flow of the event
- 3. Description of what can go wrong and how this is handled
- 4.Information about other activities parallel to the scenario
- 5.Description of the system state when the scenario finishes

LIBSYS scenario

- **Initial assumption**: The user has logged on to the LIBSYS system and has located the journal containing the copy of the article.
- **Normal**: The user selects the article to be copied. He or she is then prompted by the system to either provide subscriber information for the journal or to indicate how they will pay for the article. Alternative payment methods are by credit card or by quoting an organisational account number.
- The user is then asked to fill in a copyright form that maintains details of the transaction and they then submit this to the LIBSYS system.
- The copyright form is checked and, if OK, the PDF version of the article is downloaded to the LIBSYS working area on the user's computer and the user is informed that it is available. The user is asked to select a printer and a copy of the article is printed

LIBSYS scenario

- What can go wrong: The user may fail to fill in the copyright form correctly. In this case, the form should be re-presented to the user for correction. If the resubmitted form is still incorrect then the user's request for the article is rejected.
- The payment may be rejected by the system. The user's request for the article is rejected.
- The article download may fail. Retry until successful or the user terminates the session..
- Other activities: Simultaneous downloads of other articles.
- **System state on completion**: User is logged on. The downloaded article has been deleted from LIBSYS workspace if it has been flagged as print-only.
- 4. Use cases -- scenario based technique for requirement elicitation. A fundamental feature of UML, notation for describing object-oriented system models. Identifies a type of interaction and the actors involved. Sequence diagrams are used to add information to a Use case

Article printing use-case Ar ticle printing

LIBSYS use cases
Article printing
Article search
User administration
Supplier Catalogue services
Library

User Library Staff

REQUIREMENTS VALIDATION

Concerned with showing that the requirements define the systemthat the customer wants. Important because errors in requirements can lead to extensive rework cost

- Validation checks
- 1. Validity checks -- Verification that the system performs the intended function bythe user
- 2. Consistency check -- Requirements should not conflict
- 3. Completeness checks --Includes requirements which define all functions and constraints intended by the system user
- 4. Realism checks -- Ensures that the requirements can be actually implemented
- 5. Verifiability -- Testable to avoid disputes between customer and developer.

VALIDATION TECHNIQUES

1.REQUIREMENTS REVIEWS

Reviewers check the following:

- (a) Verifiability: Testable
- (b) Comprehensibility
- (c) Traceability
- (d) Adaptability

2.PROTOTYPING

3.TEST-CASE GENERATION

Requirements management

Requirements are likely to change for large software systems and as such requirements management process is required to handle changes.

Reasons for requirements changes

- (a) Diverse Users community where users have different requirements and priorities
- (b) System customers and end users are different
- (c) Change in the business and technical environment after installation

Two classes of requirements

- (a) Enduring requirements: Relatively stable requirements
- (b) Volatile requirements: Likely to change during system development process or during operation

Requirements management planning

An essential first stage in requirement management process. Planning process consists of the following

- 1. Requirements identification -- Each requirement must have unique tag for cross reference and traceability
- 2. Change management process -- Set of activities that assess the impact and cost of changes
- 3. Traceability policy -- A matrix showing links between requirements and otherelements of software development
- 4.CASE tool support -- Automatic tool to improve efficiency of change management

process. Automated tools are required for requirements storage, change management and traceability management

Traceability

Maintains three types of traceability information.

- 1. Source traceability--Links the requirements to the stakeholders
- 2. Requirements traceability--Links dependent requirements within the requirements document
- 3. Design traceability-- Links from the requirements to the design module

Req.	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2
id								
1.1		D	R					
1.2			D			D		D
1.3	R			R				
2.1			R		D			D
2.2								D
2.3		R		D				
3.1								R
3.2							R	

A traceability matrix

Requirements change management

Consists of three principal stages:

- 1. Problem analysis and change specification-- Process starts with a specific change proposal and analysed to verify that it is valid
- 2. Change analysis and costing--Impact analysis in terms of cost, time and risks
- 3. Change implementation--Carrying out the changes in requirements document, system design and its implementation

SYSTEM MODELS

Used in analysis process to develop understanding of the existing system or new system. Excludes details. An abstraction of the system

Types of system models

- 1.Context models
- 2. Behavioural models
- 3.Data models
- 4. Object models
- 5.Structured models

CONTEXT MODELS

A type of architectural model. Consists of sub-systems that make up an entire system First step: To identify the subsystem.

Represent the high level architectural model as simple block diagram

- Depict each sub system a named rectangle
- Lines between rectangles indicate associations between subsystems Disadvantages
- --Concerned with system environment only, doesn't take into account other systems, which may take data or give data to the model

The context of an ATM system consists of the following

Auto-teller system

Security system

Maintenance system

Account data base

Usage database

Branch accounting system

Branch counter system

Behavioral models

Describes the overall behaviour of a system.

Two types of behavioural model

- 1.Data Flow models
- 2.State machine models

<u>Data flow models</u> --Concentrate on the flow of data and functional transformation on that data. Show the processing of data and its flow through a sequence of processing steps. Help analyst understand what is going on

Advantages

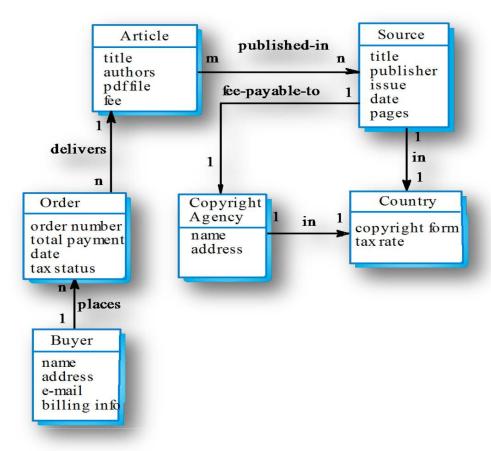
- -- Simple and easily understandable
- -- Useful during analysis of requirements

State machine models

Describe how a system responds to internal or external events. Shows system states and events that cause transition from one state to another. Does not show the flow of data within the system. Used for modeling of real time systems

Exp: Microwave oven

Assumes that at any time, the system is in one of a number of possible states. Stimulus triggers a transition from on state to another state


Disadvantage

-- Number of possible states increases rapidly for large system models

DATA MODELS

Used to describe the logical structure of data processed by the system. An entity-relation-attribute model sets out the entities in the system, the relationships between these entities and the entity attributes. Widely used in database design. Can readily be implemented using relational databases. No specific notation provided in the UML but objects and associations can be used.

Library semantic model

Data dictionary entries

Name	Description	Type	Date
Article	Details of the published article that may be ordered by people using LIBSYS.	Entity	30.12.2002
authors	The names of the authors of the article who may be due a share of the fee.	Attribute	30.12.2002
Buyer	The person or organisation that orders a copy of the article.	Entity	30.12.2002
fee- payable-to	A 1:1 relationship between Article and the Copyright Agency who should be paid the copyright fee.	Relation	29.12.2002
Address (Buyer)	The address of the buyer. This is used to any paper billing information that is required.	Attribute	31.12.2002

Jultwale Engineering Fage 20

OBJECT MODELS

An object oriented approach is commonly used for interactive systems development. Expresses the systems requirements using objects and developing the system in an object oriented PL such as c++

A object class: An abstraction over a set of objects that identifies common attributes. Objects are instances of object class. Many objects may be created from a single class.

Analysis process

-- Identifies objects and object classes

Object class in UML

- --Represented as a vertically oriented rectangle with three sections
- (a) The name of the object class in the top section
- (b) The class attributes in the middle section
- (c) The operations associated with the object class are in lower section.

OBJECT MODELS

INHERITANCE MODELS

A type of object oriented model which involves in object classes attributes. Arranges classes into an inheritance hierarchy with the most general object class at the top of hierarchy Specialized objects inherit their attributes and services

UML notation

- -- Inheritance is shown upward rather than downward
- --Single Inheritance: Every object class inherits its attributes and operations from a single parent class
- --Multiple Inheritance: A class of several of several parents.

OBJECT MODELS

OBJECT AGGREGATION

Some objects are grouping of other objects. An aggregate of a set of other objects. The classes representing these objects may be modeled using an object aggregation model A diamond shape on the source of the link represents the composition.

OBJECT-BEHAVIORAL MODEL

- -- Shows the operations provided by the objects
- -- Sequence diagram of UML can be used for behavioral modeling

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY

UNIT III

DESIGN ENGINEERING

DESIGN PROCESS AND DESIGN QUALITY

ENCOMPASSES the set of principles, concepts and practices that lead to the development of high quality system or product. Design creates a representation or model of the software. Design model provides details about S/W architecture, interfaces and components that are necessary to implement the system. Quality is established during Design. Design should exhibit firmness, commodity and design. Design sits at the kernel of S/W Engineering. Design sets the stage for construction.

QUALITY GUIDELINES

- Uses recognizable architectural styles or patterns
- Modular; that is logically partitioned into elements or subsystems
- Distinct representation of data, architecture, interfaces and components
- Appropriate data structures for the classes to be implemented
- Independent functional characteristics for components
- Interfaces that reduces complexity of connection
- Repeatable method

QUALITY ATTRIBUTES

FURPS quality attributes

- Functionality
- * Feature set and capabilities of programs
- * Security of the overall system
- Usability
- * user-friendliness
- * Aesthetics
- * Consistency
- * Documentation
- Reliability
- * Evaluated by measuring the frequency and severity of failure
- * MTTF
- Supportability
- * Extensibility
- * Adaptability
- * Serviceability

DESIGN CONCEPTS

- 1. Abstractions
- 2. Architecture
- 3. Patterns
- 4. Modularity
- 5. Information Hiding

- 6. Functional Independence
- 7. Refinement
- 8. Re-factoring
- 9. Design Classes

DESIGN CONCEPTS

ABSTRACTION

Many levels of abstraction.

Highest level of abstraction: Solution is slated in broad terms using the language of the problem environment

Lower levels of abstraction: More detailed description of the solution is provided

- Procedural abstraction-- Refers to a sequence of instructions that a specific and limited function
- Data abstraction-- Named collection of data that describe a data object

DESIGN CONCEPTS

ARCHITECTURE--Structure organization of program components (modules) and their interconnection

Architecture Models

- (a) Structural Models-- An organised collection of program components
- (b) Framework Models-- Represents the design in more abstract way
- (c) Dynamic Models-- Represents the behavioral aspects indicating changes as a function of external events
- (d). Process Models-- Focus on the design of the business or technical process

PATTERNS

Provides a description to enables a designer to determine the followings:

- (a). Whether the pattern is applicable to the current work
- (b). Whether the pattern can be reused
- (c). Whether the pattern can serve as a guide for developing a similar but functionally or structurally different pattern

MODULARITY

Divides software into separately named and addressable components, sometimes called modules. Modules are integrated to satisfy problem requirements. Consider two problems p1 and p2. If the complexity of p1 iscp1 and of p2 is cp2 then effort to solve p1=cp1 and effort to solve p2=cp2

If cp1>cp2 then ep1>ep2

The complexity of two problems when they are combined is often greater than the sum of the perceived complexity when each is taken separately. • Based on Divide and Conquer strategy: it is easier to solve a complex problem when broken into sub-modules

INFORMATION HIDING

Information contained within a module is inaccessible to other modules who do not need such information. Achieved by defining a set of Independent modules that communicate with one another only that information necessary to achieve S/W function. Provides the greatest benefits when modifications are required during testing and later. Errors introduced during modification are less likely to propagate to other location within the S/W.

FUNCTIONAL INDEPENDENCE

A direct outgrowth of Modularity, abstraction and information hiding. Achieved by developing a module with single minded function and an aversion to excessive interaction with other modules. Easier to develop and have simple interface. Easier to maintain because secondary effects caused b design or code modification are limited, error propagation is reduced and reusable modules are possible. Independence is assessed by two quantitative criteria:

- (1) Cohesion
- (2) Coupling

Cohesion -- Performs a single task requiring little interaction with other components Coupling--Measure of interconnection among modules. Coupling should be low and cohesion should be high for good design.

REFINEMENT & REFACTORING

REFINEMENT -- Process of elaboration from high level abstraction to the lowest level abstraction. High level abstraction begins with a statement of functions. Refinement causes the designer to elaborate providing more and more details at successive level of abstractions Abstraction and refinement are complementary concepts.

Refactoring -- Organization technique that simplifies the design of a component without changing its function or behavior. Examines for redundancy, unused design elements and inefficient or unnecessary algorithms.

DESIGN CLASSES

Class represents a different layer of design architecture.

Five types of Design Classes

- 1. User interface class -- Defines all abstractions that are necessary for human computer interaction
- 2. Business domain class -- Refinement of the analysis classes that identity attributes and services to implement some of business domain
- 3. Process class -- implements lower level business abstractions required to fully manage the business domain classes
- 4.Persistent class -- Represent data stores that will persist beyond the execution of the software
- 5. System class -- Implements management and control functions to operate and communicate within the computer environment and with the outside world.

THE DESIGN MODEL

Analysis viewed in two different dimensions as process dimension and abstract dimension. Process dimension indicates the evolution of the design model as design tasks are executed as part of software process. Abstraction dimension represents the level of details as each element of the analysis model is transformed into design equivalent

Data Design elements

- -- Data design creates a model of data that is represented at a high level of abstraction
- -- Refined progressively to more implementation-specific representation for processing by the computer base system
- -- Translation of data model into a data base is pivotal to achieving business objective of a system

THE DESIGN MODEL

Architectural design elements. Derived from three sources

- (1) Information about the application domain of the software
- (2) Analysis model such as dataflow diagrams or analysis classes.
- (3) Architectural pattern and styles Interface Design elements

Set of detailed drawings constituting:

- (1) User interface
- (2) External interfaces to other systems, devices etc
- (3) Internal interfaces between various components

THE DESIGN MODEL

Deployment level design elements. Indicates how software functionality and subsystem will be allocated with in the physical computing environment. UML deployment diagram is developed and refined

Component level design elements Fully describe the internal details of each software component. UML diagram can be used

CREATING AN ARCHITECTURAL DESIGN

What is SOFTWARE ARCHITECTURE... The software architecture of a program or computing system is the structure or structures of the system, which comprise software components, the externally visible properties of those components and the relationship among them.

Software Architecture is not the operational software. It is a representation that enables a software engineer to

- Analyze the effectiveness of the design in meeting its stated requirements.
- • consider architectural alternative at a stage when making design changes is still relatively easy.
- Reduces the risk associated with the construction of the software.

Why Is Architecture Important?

Three key reasons

- --Representations of software architecture enables communication and understanding between stakeholders
- --Highlights early design decisions to create an operational entity.
- --constitutes a model of software components and their interconnection

Data Design

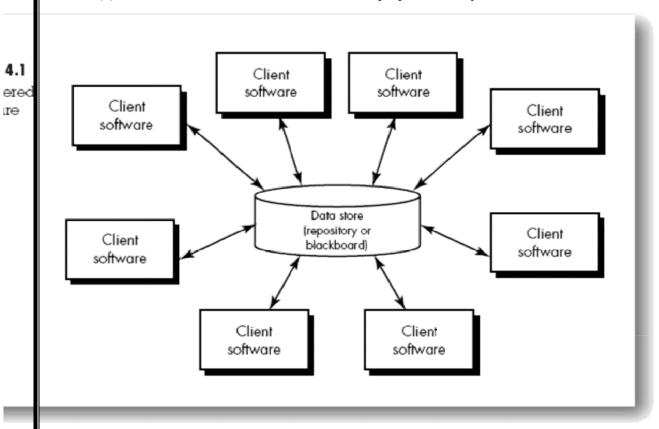
The data design action translates data objects defined as part of the analysis model into data structures at the component level and a database architecture at application level when necessary.

DATA DESIGN AT ARCHITECTURE LEVEL

- Data structure at programming level
- Data base at application level
- Data warehouse at business level.

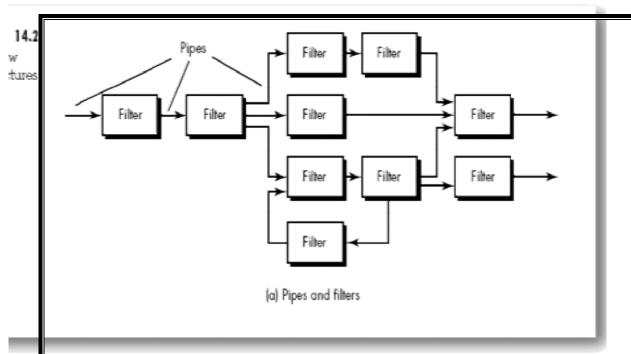
DATA DESIGN AT COMPONENT LEVEL

Principles for data specification:


1. Proper selection of data objects and data and data models

- 2. Identification of attribute and functions and their encapsulation of these within a class
- 3. Mechanism for representation of the content of **each** data object. Class diagrams may be used
- 4.Refinement of data design elements from requirement analysis to component level design.
- 5.Information hiding
- 6.A library of useful data structures and operations be developed.
- 7. Software design and PL should support the specification and realization of abstract data types..

ARCHITECTURAL STYLES


Describes a system category that encompasses:

- (1) a set of *components*
- (2) a set of *connectors* that enables "communication and coordination
- (3) Constraints that define how components can be integrated to form the system
- (4) Semantic models to understand the overall properties of a system

Data-flow architectures

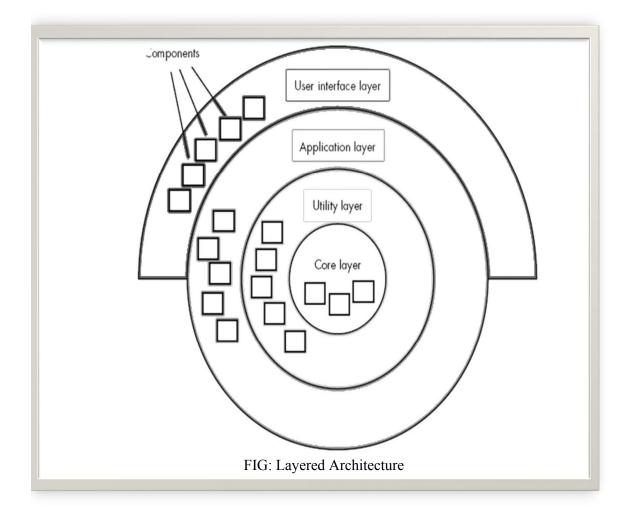
Shows the flow of input data, its computational components and output data. Structure is also called pipe and Filter. Pipe provides path for flow of data. Filters manipulate data and work independent ofits neighboring filter. If data flow degenerates into a single line of transform, it is termed as batch sequential.

Call and return architectures

Achieves a structure that is easy to modify and scale .Two sub styles

- (1) Main program/sub program architecture
- -- Classic program structure
- -- Main program invokes a number of components, which in turn invoke still other components
- (2) Remote procedure call architecture
- -- Components of main program/subprogram are distributed across computers over network

Object-oriented architectures


The components of a system encapsulate data and the operations. Communication and coordination between components is done via message

Layered architectures

A number of different layers are defined Inner Layer(interface with OS)

• Intermediate Layer Utility services and application function)

Outer Layer (User interface)

ARCHITECTURAL PATTERNS

A template that specifies approach for some behavioral characteristics of the system Patterns are imposed on the architectural styles

Pattern Domains

- 1.Concurrency
- --Handles multiple tasks that simulates parallelism.
- -- Approaches (Patterns)
 - (a) Operating system process management pattern
 - (b) A task scheduler pattern
- 2.Persistence
 - --Data survives past the execution of the process
 - --Approaches (Patterns)
- (a) Data base management system pattern
- (b) Application Level persistence Pattern(word processing software)

3.Distribution

- -- Addresses the communication of system in a distributed environment
- --Approaches(Patterns)
- (a) Broker Pattern
- -- Acts as middleman between client and server.

Object-Oriented Design : Objects and object classes, An Object-Oriented design process, Design evolution.

• **Performing User interface design :** Golden rules, User interface analysis and design, interface analysis, interface design steps, Design evaluation.

Object And Object Classes

- Object: An object is an entity that has a state and a defined set of operations that operate on that state.
- An object class definition is both a type specification and a template for creating objects.
- It includes declaration of all the attributes and operations that are associated with object of that class.

Object Oriented Design Process

There are five stages of object oriented design process

- 1)Understand and define the context and the modes of use of the system.
- 2)Design the system architecture
- 3)Identify the principle objects in the system.
- 4)Develop a design models
- 5)Specify the object interfaces

Systems context and modes of use. It specify the context of the system. it also specify the relationships between the software that is being designed and its external environment.

- If the system context is a static model it describe the other system in that environment.
- If the system context is a dynamic model then it describe how the system actually interact with the environment.

System Architecture

Once the interaction between the software system that being designed and the system environment have been defined. We can use the above information as basis for designing the System

Architecture.

Object Identification--This process is actually concerned with identifying the object classes. We can identify the object classes by the following

- 1)Use a grammatical analysis
- 2)Use a tangible entities
- 3)Use a behaviourial approach
- 4)Use a scenario based approach

Design model

Design models are the bridge between the requirements and implementation. There are two type of design models

- 1)Static model describe the relationship between the objects.
- 2)Dynamic model describe the interaction between the objects

Object Interface Specification

It is concerned with specifying the details of the interfaces to an objects.

Design evolution. The main advantage OOD approach is to simplify the problem of making changes to the design. Changing the internal details of an object is unlikely to effect any other system object.

Golden Rules

- 1. Place the user in control
- 2. Reduce the user's memory load
- 3. Make the interface consistent

Place the User in Control

- Define interaction modes in a way that does not force a user into unnecessary or undesired actions
- Provide for flexible interaction.
- Allow user interaction to be interruptible and undoable.
- Streamline interaction as skill levels advance and allow the interaction to be customized.
- Hide technical internals from the casual user.
- Design for direct interaction with objects that appear on the screen.

Make the Interface Consistent. Allow the user to put the current task into a meaningful context. Maintain consistency across a family of applications. If past interactive models have created user expectations, do not make changes unless there is a compelling reason to do so.

USER INTERFACE ANALYSISAND DESIGN

The overall process for analyzing and designing a user interface begins with the creation of different models of system function. There are 4 different models that is to be considered when a user interface is to be analyzed and designed.

User Interface Design Models

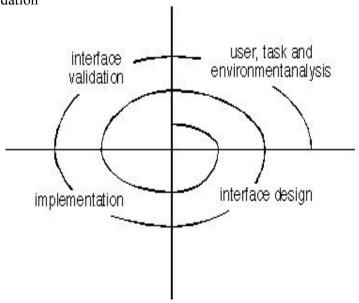
User model —Establishes a profile of allend users of the system

Design model — A design model of the entire system incorporates data, architectural, interface and procedural representation of the software.

A design realization of the user model

User's Mental model (system perception) . the user's mental image of what the interface is Implementation model — the interface "look and feel" coupled with supporting information that describe interface syntax and semantics

Users can be categorized as


- 1.Novice No syntactic knowledge of the system and little semantic knowledge of the application or computer usage of the system
- 2.Knowledgeable,intermittent users- Reasonable semantic knowledge of the application but low recall of syntactic information to use the system
- 3. Knowledgeable, frequent users-Good semantic and syntactic knowledge

User interface analysis and design process

• The user interface analysis and design process is an iterative process and it can be represented as a spiral model

It consists of 5 framework activities

- 1.User,task and environment analysis
- 2.Interface design
- 3.Interface construction
- 4.Interface validation

User Interface Design Process

Interface analysis

- -Understanding the user who interacts with the system based on their skill levels.i.e, requirement gathering
- -The task the user performs to accomplish the goals of the system are identified, described and elaborated. Analysis of work environment.

Interface design

In interface design, all interface objects and actions that enable a user to perform all desired task are defined

Implementation

A prototype is initially constructed and then later user interface development tools may be used to complete the construction of the interface.

Validation

The correctness of the system is validated against the user requirement

Interface Analysis

Interface analysis means understanding

- -(1) the people (end-users) who will interact with the system through the interface;
- -(2) the tasks that end-users must perform to do their work,
- -(3) the content that is presented as part of the interface
- -(4) the environment in which these tasks will be conducted.

User Analysis

- Are users trained professionals, technician, clerical, o manufacturing workers?
- What level of formal education does the average user have?
- Are the users capable of learning from written materials or have they expressed a desire for classroom training?
- Are users expert typists or keyboard phobic?
- What is the age range of the user community?
- Will the users be represented predominately by one gender?
- How are users compensated for the work they perform?
- Do users work normal office hours or do they work until the job is done?

Task Analysis and Modeling

Analysis Techniques

- Use-cases define basic interaction
- Task elaboration refines interactive tasks
- Object elaboration identifies interface objects(classes)
- Workflow analysis defines how a work process is completed when several people (and roles) are involved
- What work will the user perform in specific circumstances?

Interface Design Steps

- Using information developed during interface analysis define interface objects and actions (operations).
- Define events (user actions) that will cause the state of the user interface to change. Model this behavior.
- Depict each interface state as it will actually look to the end-user.
- Indicate how the user interprets the state of the system from information provided through the interface.

Interface Design Patterns. Patterns are available for

- The complete UI
- Page layout
- Forms and input
- Tables
- Direct data manipulation
- Navigation
- Searching
- Page elements
- e-Commerce

Design Issues

- Response time
- Help facilities
- Error handling
- Menu and command labeling
- Application accessibility
- Internationalization

Design Evaluation Cycle: Steps:

Preliminary design
Build prototype #1
Interface evaluation is studied by designer
Design modifications are made
Build prototype # n
Interface
User evaluate's interface
Interface design is complete

UNIT IV

Testing Strategies

Software is tested to uncover errors introduced during design and construction. Testing often accounts for more project effort than other s/e activity. Hence it has to be done carefully using a testing strategy. The strategy is developed by the project manager, software engineers and testing specialists.

Testing is the process of execution of a program with the intention of finding errors

Involves 40% of total project cost

Testing Strategy provides a road map that describes the steps to be conducted as part of testing. It should incorporate test planning, test case design, test execution and resultant data collection and execution

Validation refers to a different set of activities that ensures that the software is traceable to the customer requirements.

V&V encompasses a wide array of Software Quality Assurance

A strategic Approach for Software testing

Testing is a set of activities that can be planned in advance and conducted systematically. Testing strategy should have the following characteristics:

- -- usage of Formal Technical reviews(FTR)
- -- Begins at component level and covers entire system
- -- Different techniques at different points
- -- conducted by developer and test group
- -- should include debugging

Software testing is one element of verification and validation.

Verification refers to the set of activities that ensure that software correctly implements a specific function. (Ex: Are we building the product right?)

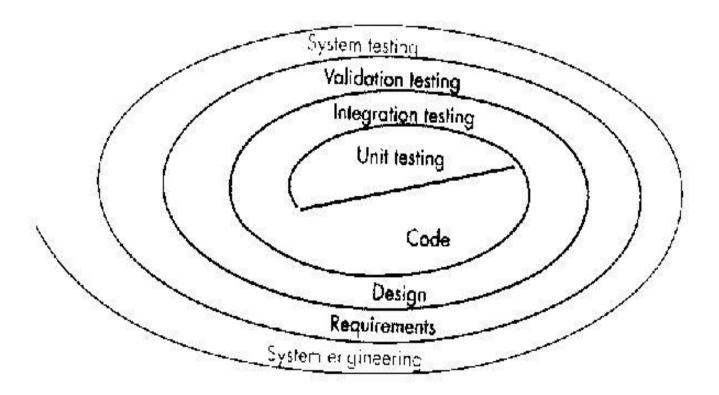
Validation refers to the set of activities that ensure that the software built is traceable to customer requirements. (Ex: Are we building the right product?)

Testing Strategy

Testing can be done by software developer and independent testing group.

Testing and debugging are different activities. Debugging follows testing

Low level tests verifies small code segments. High level tests validate major system functions against customer requirements


Test Strategies for Conventional Software:

Testing Strategies for Conventional Software can be viewed as a spiral consisting of four levels of testing:

- 1)Unit Testing
- 2)Integration Testing

- 3) Validation Testing and
- 4)System Testing

Spiral Representation of Testing for Conventional Software

<u>Unit Testing</u> begins at the vortex of the spiral and concentrates on each unit of software in source code. It uses testing techniques that exercise specific paths in a component and its control structure to ensure complete coverage and maximum error detection. It focuses on the internal processing logic and data structures. Test cases should uncover errors.

Boundary testing also should be done as s/w usually fails at its boundaries. Unit tests can be designed before coding begins or after source code is generated.

<u>Integration testing</u>: In this the focus is on design and construction of the software architecture. It addresses the issues associated with problems of verification and program construction by testing inputs and outputs. Though modules function independently problems may arise because of interfacing. This technique uncovers errors associated with interfacing. We can use top-down integration wherein modules are integrated by moving downward through the control hierarchy,

beginning with the main control module. The other strategy is bottom –up which begins construction and testing with atomic modules which are combined into clusters as we move up the hierarchy. A combined approach called Sandwich strategy can be used i.e., top-down for higher level modules and bottom-up for lower level modules.

<u>Validation Testing</u>: Through Validation testing requirements are validated against s/w constructed. These are high-order tests where validation criteria must be evaluated to assure that s/w meets all functional, behavioural and performance requirements. It succeeds when the software functions in a manner that can be reasonably expected by the customer.

- 1) Validation Test Criteria
- 2)Configuration Review
- 3)Alpha And Beta Testing

The validation criteria described in SRS form the basis for this testing. Here, Alpha and Beta testing is performed.

Alpha testing is performed at the developers site by end users in a natural setting and with a controlled environment.

Beta testing is conducted at end-user sites. It is a "live" application and environment is not controlled. End-user records all problems and reports to developer. Developer then makes modifications and releases the product.

System Testing: In system testing, s/w and other system elements are tested as a whole. This is the last high-order testing step which falls in the context of computer system engineering. Software is combined with other system elements like H/W, People, Database and the overall functioning is checked by conducting a series of tests. These tests fully exercise the computer based system. The types of tests are:

- 1.Recovery testing: Systems must recover from faults and resume processing within a pre specified time. It forces the system to fail in a variety of ways and verifies that recovery is properly performed. Here the Mean Time To Repair (MTTR) is evaluated to see if it is within acceptable limits.
- 2.Security Testing: This verifies that protection mechanisms built into a system will protect it from improper penetrations. Tester plays the role of hacker. In reality given enough resources and time it is possible to ultimately penetrate any system. The role of system designer is to make penetration cost more than the value of the information that will be obtained.
- 3.Stress testing: It executes a system in a manner that demands resources in abnormal quantity, frequency or volume and tests the robustness of the system.
- 4.Performance Testing: This is designed to test the run-time performance of s/w within the context of an integrated system. They require both h/w and s/w instrumentation.

Testing Tactics:

The goal of testing is to find errors and a good test is one that has a high probability of finding an error. A good test is not redundant and it should be neither too simple nor too complex.

Two major categories of software testing

Black box testing: It examines some fundamental aspect of a system, tests whether each function of product is fully operational.

White box testing: It examines the internal operations of a system and examines the procedural detail.

Black box testing

This is also called behavioural testing and focuses on the functional requirements of software. It fully exercises all the functional requirements for a program and finds incorrect or missing functions, interface errors, database errors etc. This is performed in the later stages in the testing process. Treats the system as black box whose behaviour can be determined by studying its input and related output Not concerned with the internal. The various testing methods employed here are:

1)Graph based testing method: Testing begins by creating a graph of important objects and their relationships and then devising a series of tests that will cover the graph so that each object and relationship is exercised and errors are uncovered.

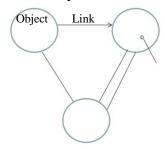


Fig: O-R graph.

2)Equivalence partitioning: This divides the input domain of a program into classes of data from which test cases can be derived. Define test cases that uncover classes of errors so that no.of test cases are reduced. This is based on equivalence classes which represents a set of valid or invalid states for input conditions. Reduces the cost of testing

Example

Input consists of 1 to 10

Then classes are n<1,1<=n<=10,n>10

Choose one valid class with value within the allowed range and two invalid classes where values are greater than maximum value and smaller than minimum value.

3)Boundary Value analysis

Select input from equivalence classes such that the input lies at the edge of the equivalence classes. Set of data lies on the edge or boundary of a class of input data or generates the data that lies at the boundary of a class of output data. Test cases exercise boundary values to uncover errors at the boundaries of the input domain.

Example

If 0.0 <= x <= 1.0

Then test cases are (0.0,1.0) for valid input and (-0.1 and 1.1) for invalid input

4)Orthogonal array Testing

This method is applied to problems in which input domain is relatively small but too large for exhaustive testing

Example

Three inputs A,B,C each having three values will require 27 test cases. Orthogonal testing will reduce the number of test case to 9 as shown below

White Box testing

Also called glass box testing. It uses the control structure to derive test cases. It exercises all independent paths, Involves knowing the internal working of a program, Guarantees that all independent paths will be exercised at least once .Exercises all logical decisions on their true and false sides, Executes all loops, Exercises all data structures for their validity. White box testing techniques

- 1.Basis path testing
- 2. Control structure testing

1.Basis path testing

Proposed by Tom McCabe. Defines a basic set of execution paths based on logical complexity of a procedural design. Guarantees to execute every statement in the program at least once Steps of Basis Path Testing

- 1.Draw the flow graph from flow chart of the program
- 2. Calculate the cyclomatic complexity of the resultant flow graph
- 3. Prepare test cases that will force execution of each path

Two methods to compute Cyclomatic complexity number

- 1.V(G)=E-N+2 where E is number of edges, N is number of nodes
- 2.V(G)=Number of regions

Basis path testing is simple and effective

It is not sufficient in itself

2. Control Structure testing

This broadens testing coverage and improves quality of testing. It uses the following methods:

a) Condition testing: Exercises the logical conditions contained in a program module.

Focuses on testing each condition in the program to ensure that it does not contain errors

Simple condition

E1<relation operator>E2

Compound condition

simple condition<Boolean operator>simple condition

Types of errors include operator errors, variable errors, arithmetic expression errors etc.

b) Data flow Testing

This selects test paths according to the locations of definitions and use of variables in a program Aims to ensure that the definitions of variables and subsequent use is tested

First construct a definition-use graph from the control flow of a program

DEF(definition):definition of a variable on the left-hand side of an assignment statement

USE: Computational use of a variable like read, write or variable on the right hand of assignment statement

Every DU chain be tested at least once.

c) Loop Testing

This focuses on the validity of loop constructs. Four categories can be defined

- 1. Simple loops
- 2. Nested loops
- 3. Concatenated loops
- 4. Unstructured loops

Testing of simple loops

N is the maximum number of allowable passes through the loop

- 1.Skip the loop entirely
- 2.Only one pass through the loop
- 3.Two passes through the loop
- 4.m passes through the loop where m>N
- 5.N-1,N,N+1 passes the loop

The Art of Debugging

Debugging occurs as a consequence of successful testing. It is an action that results in the rmoval of errors. It is very much an art.

Debugging has two outcomes:

- cause will be found and corrected
- cause will not be found

Characteristics of bugs:

- symptom and cause can be in different locations
- symptoms may be caused by human error or timing problems

Debugging is an innate human trait. Some are good at it and some are not.

Debugging Strategies:

The objective of debugging is to find and correct the cause of a software error which is realized by a combination of systematic evaluation, intuition and luck. Three strategies are proposed:

- 1)Brute Force Method.
- 2)Back Tracking
- 3)Cause Elimination

Brute Force: Most common and least efficient method for isolating the cause of a s/w error. This is applied when all else fails. Memory dumps are taken, run-time traces are invoked and program is loaded with output statements. Tries to find the cause from the load of information Leads to waste of time and effort.

Back tracking: Common debugging approach. Useful for small programs

Beginning at the system where the symptom has been uncovered, the source code is traced backward until the site of the cause is found.

More no.of lines implies no.of paths are unmanageable.

<u>Cause Elimination:</u> Based on the concept of Binary partitioning. Data related to error occurenec are organized to isolate potential causes. A "cause hypothesis" is devised and data is used to prove or disprove it. A list of all possible causes is developed and tests are conducted to eliminate each cause.

<u>Automated Debugging</u>: This supplements the above approaches with debugging tools that provide semi-automated support like debugging compilers, dynamic debugging aids, test case generators, mapping tools etc.

Regression Testing: When a new module is added as part of integration testing the software changes. This may cause problems with the functions which worked properly before. This testing is the re-execution of some subset of tests that are already conducted to ensure that changes have not propagated unintended side effects. It ensures that changes do not introduce unintended behaviour or errors. This can be done manually or automated.

Software Quality

Conformance to explicitly stated functional and performance requirements, explicitly documented development standards, and implicit characteristics that are expected of all professionally developed software.

Factors that affect software quality can be categorized in two broad groups:

Factors that can be directly measured (e.g. defects uncovered during testing) Factors that can be measured only indirectly (e.g. usability or maintainability)

McCall's quality factors

1.Productoperation

Correctness

Reliability

Efficiency

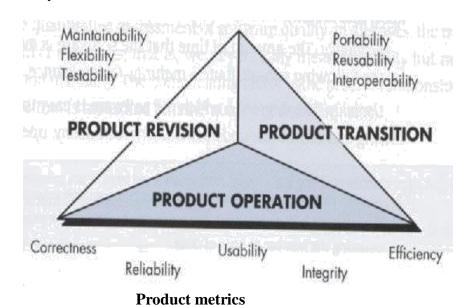
Integrity

Usability

- 2.Product Revision
- a. Maintainability
- b. Flexibility

c. Testability

3. Product Transition


Portability

Reusability

Interoperability ISO 9126

Quality Factors

- 1.Functionality
- 2.Reliability
- 3.Usability
- 4.Efficiency
- 5. Maintainability
- 6.Portability

Product metrics for computer software helps us to assess quality.

Measure Provides a quantitative indication of the extent, amount, dimension, capacity or size of some attribute of a product or process

Metric(IEEE 93 definition)

A quantitative measure of the degree to which a system, component or process possess a given attribute

Indicator

A metric or a combination of metrics that provide insight into the software process, a software project or a product itself

Product Metrics for analysis, Design, Test and maintenance

Product metrics for the Analysis model

☐ Function point Metric

☐ ☐ First proposed by Albrecht

Measures the functionality delivered by the system FP computed from the following parameters

1) Number of external inputs(EIS)

2) Number external outputs(EOS)

Product metrics for the Analysis model

Number of external Inquiries(EQS)

Number of Internal Logical Files(ILF)

Number of external interface files(EIFS)

Each parameter is classified as simple, average or complex and weights are assigned as follows

Product metrics for the Analysis model

• Information Domain	Count	Simple	avg	Complex
EIS	3	4	6	
EOS	4	5	7	
EQS	3	4	6	
ILFS	7	10	15	
EIFS	5	7	10	

FP=Count total *[0.65+0.01*E(Fi)]

Metrics for Design Model

DSQI(Design Structure Quality Index)

US air force has designed the DSQI

Compute s1 to s7 from data and architectural design

S1:Total number of modules

S2:Number of modules whose correct function depends on the data input

S3:Number of modules whose function depends on prior processing

• S4:Number of data base items

S5:Number of unique database items

S6: Number of database segments

S7:Number of modules with single entry and exit

Calculate D1 to D6 from s1 to s7 as follows:

D1=1 if standard design is followed otherwise D1=0

D2(module independence)=(1-(s2/s1))

D3(module not depending on prior processing)=(1-(s3/s1))

D4(Data base size)=(1-(s5/s4))

D5(Database compartmentalization)=(1-(s6/s4)

D6(Module entry/exit characteristics)=(1-(s7/s1))

• DSQI=sigma of WiDi

i=1 to 6,Wi is weight assigned to Di

If sigma of wi is 1 then all weights are equal to 0.167

DSQI of present design be compared with past DSQI. If DSQI is significantly lower than the average, further design work and review are indicated

METRIC FOR SOURCE CODE

HSS(Halstead Software science)

Primitive measure that may be derived after the code is generated or estimated once design is complete

 n_1 = the number of distinct operators that appear in a program

 n_2 = the number of distinct operands that appear in a program

 N_1 = the total number of operator occurrences.

 N_2 = the total number of operand occurrence.

Overall program length N can be computed:

 $N = n_1 \log_2 n_1 + n_2 \log_2 n_2$

• $V = N \log_2(n_1 + n_2)$

METRIC FOR TESTING

 n_1 = the number of distinct operators that appear in a program

 n_2 = the number of distinct operands that appear in a program

 N_1 = the total number of operator occurrences.

 N_2 = the total number of operand occurrence.

Program Level and Effort

 $PL = 1/[(n_1/2) \times (N_2/n_2 l)]$

e = V/PL

METRICS FOR MAINTENANCE

 M_t = the number of modules in the current release

 F_c = the number of modules in the current release that have been changed

 F_a = the number of modules in the current release that have been added.

 F_d = the number of modules from the preceding release that were deleted in the current release

The Software Maturity Index, SMI, is defined as:

$$SMI = [M_{t-(}F_c + F_{a+}F_{d)/} M_t]$$

Metrics for Process And Product

Software Measurement:

Software measurement can be categorized as

- 1)Direct Measure and
- 2)Indirect Measure

Metrics for Process and Product

Direct Measurement

Direct measure of software process include cost and effort

Direct measure of product include lines of code, Execution speed, memory size, defects per reporting time period.

Indirect Measurement

Indirect measure examines the quality of software product itself(e.g. :-

Functionality, complexity, efficiency, reliability and maintainability)

Reasons for measurement

To gain baseline for comparison with future assessment

To determine status with respect to plan

To predict the size, cost and duration estimate

To improve the product quality and process improvement

Software Measurement

Size Oriented Metrics
☐ ☐ Web based application metric
□ □ Object oriented metrics
☐ ☐ Function oriented metrics
The metrics in software Measurement are $\Box \Box$ Size oriented metrics

It totally concerned with the measurement of software.

A software company maintains a simple record for calculating the size of the software.

It includes LOC, Effort,\$\$,PP document,Error,Defect ,People.

Function oriented metrics

Measures the functionality derived by the application The most widely used function oriented metric is Function point Function point is independent of programming language Measures functionality from user point of view

Object oriented metric

Relevant for object oriented programming
Based on the following
□Number of scenarios(Similar to use cases) □ □Number of key classes
□Number of support classes
□Number of average support class per key□class
□Number of subsystem
Web based application metric
Metrics related to web based application measure the following
1.Number of static pages(NSP)
2.Number of dynamic pages(NDP) Customization(C)=NSP/NSP+NDP
C should approach 1

Metrics for Software Quality

Measuring Software Quality

- 1.Correctness=defects/KLOC
- 2. Maintainability=MTTC(Mean-time to change)
- 3.Integrity=Sigma[1-(threat(1-security))]

Threat: Probability that an attack of specific type will occur within a given time

Security: Probability that an attack of a specific type will be repelled

Metrics for Software Quality

Usability: Ease of use

Defect Removal Efficiency(DRE) DRE=E/(E+D)

E is the no. of errors found before delivery and D is no. of defects reported after delivery Ideal value of DRE is 1

Risk Management

Risk is an undesired event or circumstance that occur while a project is underway. It is necessary for the project manager to anticipate and identify different risks that a project may be susceptible to.

UNIT-V

Risk Management

It aims at reducing the impact of all kinds of risk that may effect a project by identifying, analyzing and managing them

Reactive Vs Proactive risk

Reactive: It monitors the projects likely risk and resources are set aside. **Proactive**: Risk are identified, their probability and impact is accessed

Software Risk

It involve 2 characteristics

Uncertainty: Risk may or may not happen

Loss: If risk is reality unwanted loss or consequences will occur

It includes

- 1)Project Risk
- 2)Technical Risk
- 3)Business Risk
- 4)Known Risk
- 5)Unpredictable Risk
- 6)Predictable Risk
 - Project risk: Threaten the project plan and affect schedule and resultant cost Technical risk: Threaten the quality and timeliness of software to be produced
 - Business risk: Threaten the viability of software to be built
 - Known risk: These risks can be recovered from careful evaluation
 - Predictable risk: Risks are identified by past project experience
 - Unpredictable risk: Risks that occur and may be difficult to identify

Risk Identification

It concerned with identification of risk

Step1: Identify all possible risks

Step2: Create item check list

Step3: Categorize into risk components-Performance risk, cost risk, support risk and

schedule risk

Step4: Divide the risk into one of 4 categories

Negligible-0

Marginal-1

Risk Identification

Risk Identification includes

Product size

Business impact

Development environment

Process definition

Customer characteristics

Technology to be built Staff size and experience

Risk Projection

Also called risk estimation. It estimates the impact of risk on the project and the product. Estimation is done by using Risk Table. Risk projection addresses risk in 2 ways

Likelihood or probability that the risk is real(L_i)

 $Consequences(X_i)$

Risk Projection

Steps in Risk projection

- 1. Estimate L_i for each risk
- 2. Estimate the consequence X_i
- 3. Estimate the impact
- 4. Draw the risk table

Ignore the risk where the management concern is low i.e., risk having impact high or low with low probability of occurrence

Consider all risks where management concern is high i.e., high impact with high or moderate probability of occurrence or low impact with high

Risk Projection

Risks	Category	Probability	Impact	RMMM
Size estimate may be significantly low	PS	60%	2	
Larger number of users than planned	PS	30%	3	
Less reuse than planned	PS	70%	2	
End-users resist system	BU	40%	3	
Delivery deadline will be tightened	BU	50%	2	
Funding will be lost	CU	40%	1	
Customer will change requirements	PS	80%	2	
Technology will not meet expectations	TE	30%	1	
Lack of training on tools	DE	80%	3	
Staff inexperienced	ST	30%	3 2 2	
Staff turnover will be high	ST	60%	2	
•	1			
•	1			
•	1			

Impact values:

1—catastrophic

2—critical

3—marginal

4-negligible

The impact of each risk is assessed by Impact values

Catastrophic-1

Critical-2 Marginal-

3 Negligible-4

Risk Refinement

Also called Risk assessment

Refines the risk table in reviewing the risk impact based on the following three factors

a. Nature: Likely problems if risk occurs

b.Scope: Just how serious is it? c.Timing: When and how long

Risk Refinement

It is based on Risk Elaboration

Calculate Risk exposure RE=P*C

Where P is probability and C is cost of project if risk occurs

Risk Mitigation Monitoring And Management (RMMM)

Its goal is to assist project team in developing a strategy for dealing with risk

There are three issues of RMMM

1)Risk Avoidance

2)Risk Monitoring and

3)Risk Management

Risk Mitigation Monitoring And Management (RMMM)

Risk Mitigation

Proactive planning for risk avoidance

Risk Monitoring

Assessing whether predicted risk occur or not

Ensuring risk aversion steps are being properly applied

Collection of information for future risk analysis

Determine which risks caused which problems

Risk Mitigation Monitoring And Management (RMMM)

Risk Management

Contingency planning

Actions to be taken in the event that mitigation steps have failed and the risk has become a live problem

Devise RMMP(Risk Mitigation Monitoring And Management Plan)

RMMM plan

It documents all work performed as a part of risk analysis.

Each risk is documented individually by using a Risk Information Sheet.

RIS is maintained by using a database system

Quality Management

Ouality Concepts

Variation control is the heart of quality control

Form one project to another, we want to minimize the difference between the predicted resources needed to complete a project and the actual resources used, including staff, equipment, and calendar time

Quality of design

Refers to characteristics that designers specify for the end product

Quality Management

Quality of conformance

Degree to which design specifications are followed in manufacturing the product

Quality control

Series of inspections, reviews, and tests used to ensure conformance of a work product to its specifications

Quality assurance

Consists of a set of auditing and reporting functions that assess the effectiveness and completeness of quality control activities

Cost of Quality

☐ Prevention costs

Quality planning, formal technical reviews, test equipment, training

Appraisal costs

In-process and inter-process inspection, equipment calibration and maintenance, testing

Failure costs

rework, repair, failure mode analysis

External failure costs

Complaint resolution, product return and replacement, help line support, warranty work

Software Quality Assurance

Software quality assurance (SQA) is the concern of every software engineer to reduce cost and improve product time-to-market.

A Software Quality Assurance Plan is not merely another name for a test plan, though test plans are included in an SQA plan.

SQA activities are performed on every software project.

Use of metrics is an important part of developing a strategy to improve the quality of both software processes and work products.

Software Quality Assurance

Definition of Software Quality serves to emphasize:

1. Conformance to software requirements is the foundation from which software quality is measured.

Specified standards are used to define the development criteria that are used to guide the manner in which software is engineered.

3.Software must conform to implicit requirements (ease of use, maintainability, reliability, etc.) as well as its explicit requirements.

SQA Activities

Prepare SQA plan for the project.

Participate in the development of the project's software process description.

Review software engineering activities to verify compliance with the defined software process.

Audit designated software work products to verify compliance with those defined as part of the software process.

Ensure that any deviations in software or work products are documented and handled according to a documented procedure.

Record any evidence of noncompliance and reports them to management.

Software Reviews

Purpose is to find errors before they are passed on to another software engineering activity or released to the customer.

Software engineers (and others) conduct formal technical reviews (FTRs) for software quality assurance.

Using formal technical reviews (walkthroughs or inspections) is an effective means for improving software quality.

Formal Technical Review

A FTR is a software quality control activity performed by software engineers and others. The objectives are:

To uncover errors in function, logic or implementation for any representation of the software.

To verify that the software under review meets its requirements.

To ensure that the software has been represented according to predefined standards.

To achieve software that is developed in a uniform manner and

To make projects more manageable.

Formal Technical Review

Review meeting in FTR

The Review meeting in a FTR should abide to the following constraints

Review meeting members should be between three and five.

Every person should prepare for the meeting and should not require more than two hours of work for each person.

The duration of the review meeting should be less than two hours.

The focus of FTR is on a work product that is requirement specification, a detailed component design, a source code listing for a component.

The individual who has developed the work product i.e, the producer informs the project leader that the work product is complete and that a review is required.

The project leader contacts a review leader, who evaluates the product for readiness, generates copy of product material and distributes them to two or three review members for advance preparation. Each reviewer is expected to spend between one and two hours reviewing the product, making

The review leader also reviews the product and establish an agenda for the review meeting

The review meeting is attended by review leader, all reviewers and the producer.

One of the reviewer act as a recorder, who notes down all important points discussed in the meeting.

The meeting(FTR) is started by introducing the agenda of meeting and then **the producer introduces his product. Then the producer "walkthrough" the** product, the reviewers raise issues which they have prepared in advance.

If errors are found the recorder notes down

Review reporting and Record keeping

During the FTR, a reviewer (recorder) records all issues that have been raised.

A review summary report answers three questions

What was reviewed?

Who reviewed it?

What were the findings and conclusions?

Review summary report is a single page form with possible attachments

The review issues list serves two purposes

To identify problem areas in the product

To serve as an action item checklist that guides the producer as corrections are made

Review Guidelines

Review the product, not the producer

Set an agenda and maintain it

Limit debate and rebuttal

Enunciate problem areas, but don't attempt to solve every problem noted Take return notes

Limit the number of participants and insist upon advance preparation.

Develop a checklist for each product i.e likely to be reviewed

Allocate resources and schedule time for FTRS

Conduct meaningful training for all reviewer

Review your early reviews

Software Defects

Industry studies suggest that design activities

introduce 50-65% of all defects or errors

during the software process

Review techniques have been shown to be up

to 75% effective in uncovering design flaws

which ultimately reduces the cost of

subsequent activities in the software process

Statistical Quality Assurance

Information about software defects is collected and categorized

Each defect is traced back to its cause

Using the Pareto principle (80% of the defects

can be traced to 20% of the causes) isolate

the "vital few" defect causes

Move to correct the problems that caused the

defects in the "vital few"

Six Sigma for Software Engineering

The most widely used strategy for statistical quality assurance

Three core steps:

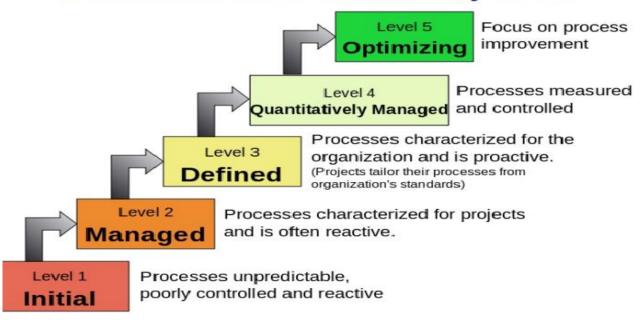
- 1. Define customer requirements, deliverables, and project goals via well-defined methods of customer communication.
- 2. Measure each existing process and its output to determine current quality performance (e.g., compute defect metrics)
- 3. Analyze defect metrics and determine vital few causes.

For an existing process that needs improvement

- 1. Improve process by eliminating the root causes for defects
- 2. Control future work to ensure that future work does not reintroduce causes of defects

If new processes are being developed

- 1. Design each new process to avoid root causes of defects and to meet customer requirements
- 2. Verify that the process model will avoid defects and meet customer requirements


CMMI (Capability Maturity Model Integration) is a proven industry framework to improve product quality and development efficiency for both hardware and software.

CMMI, staged, uses 5 levels to describe the maturity of the organization.

CMMI is an evolutionary improvement path for software organizations from immature process to a mature, disciplined one.

Provides guidance on how to gain control of processes for developing and maintaining software. CMMI describes the key elements of an effective software process.

Characteristics of the Maturity levels

Software Reliability

Defined as the probability of failure free operation of a computer program in a specified environment for a specified time period Can be measured directly and estimated using historical and developmental data Software reliability problems can usually be traced back to errors in design or implementation.

Measures of Reliability
Mean time between failure (MTBF) = MTTF + MTTR
MTTF = mean time to failure
MTTR = mean time to repair
Availability = [MTTF / (MTTF + MTTR)] x 100%

ISO 9000 Quality Standards

Quality assurance systems are defined as the organizational structure, responsibilities, procedures, processes, and resources for implementing quality management.

ISO 9000 describes the quality elements that must be present for a quality assurance system to be compliant with the standard, but it does not describe how an organization should implement these elements.

ISO 9001:2000 is the quality standard that contains 20 requirements that must be present in an effective software quality assurance system.